Cardiorenal syndrome type 1 (CRS-1) acute kidney injury (AKI) is a critical complication of acute cardiovascular disease but is poorly understood. AKI induces acute albuminuria. As chronic albuminuria is associated with worsening kidney disease and albumin has been implicated in tubular epithelial injury, we investigated whether albumin participates in CRS-1, and whether CRS-1 alters renal albumin handling. We report the role of albumin in in vivo and in vitro CRS-1Â models. An established translational model, cardiac arrest and cardiopulmonary resuscitation (CA/CPR) induced severe acute albuminuria which correlated with tubular epithelial cell death. In vivo microscopy demonstrated CA/CPR-induced glomerular filtration of exogenous albumin, while administration of exogenous albumin after CA/CPR worsened AKI compared to iso-oncotic control. Increased albumin signal was observed in the proximal tubules of CA/CPR mice compared to sham. Comparison of albumin flux from tubular lumen to epithelial cells revealed saturated albumin transport within minutes of albumin injection after CA/CPR. In vitro, HK2 cells (human kidney tubular epithelial cells), exposed to oxygen-glucose deprivation were injured by albumin in a dose dependent fashion. This interference was unchanged by the tubular endocytic receptor megalin. In conclusion, CRS-1 alters albumin filtration and tubular uptake, leading to increased tubular exposure to albumin, which is injurious to tubular epithelial cells, worsening AKI. Our findings shed light on the pathophysiology of renal albumin and may guide interventions such as albumin resuscitation to improve CRS-1 outcomes. This investigation may have important translational relevance for patients that receive exogenous albumin as part of their CRS-1 treatment regimen.
Renal injury in cardiorenal syndrome type 1 is mediated by albumin.
1 型心肾综合征中的肾损伤是由白蛋白介导的
阅读:5
作者:Funahashi Yoshio, Ikeda Mizuko, Wakasaki Rumie, Chowdhury Sheuli, Groat Tahnee, Zeppenfeld Douglas, Hutchens Michael P
| 期刊: | Physiological Reports | 影响因子: | 1.900 |
| 时间: | 2022 | 起止号: | 2022 Feb;10(3):e15173 |
| doi: | 10.14814/phy2.15173 | 研究方向: | 毒理研究 |
| 疾病类型: | 肾损伤 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
