Predictors for Early Identification of Hepatitis C Virus Infection.

丙型肝炎病毒感染早期识别的预测指标

阅读:7
作者:Tsai Mei-Hua, Lin Kuei-Hsiang, Lin Kuan-Tsou, Hung Chi-Ming, Cheng Hung-Shiang, Tyan Yu-Chang, Huang Hui-Wen, Sanno-Duanda Bintou, Yang Ming-Hui, Yuan Shyng-Shiou, Chu Pei-Yu
Hepatitis C virus (HCV) infection can cause permanent liver damage and hepatocellular carcinoma, and deaths related to HCV deaths have recently increased. Chronic HCV infection is often undiagnosed such that the virus remains infective and transmissible. Identifying HCV infection early is essential for limiting its spread, but distinguishing individuals who require further HCV tests is very challenging. Besides identifying high-risk populations, an optimal subset of indices for routine examination is needed to identify HCV screening candidates. Therefore, this study analyzed data from 312 randomly chosen blood donors, including 144 anti-HCV-positive donors and 168 anti-HCV-negative donors. The HCV viral load in each sample was measured by real-time polymerase chain reaction method. Receiver operating characteristic curves were used to find the optimal cell blood counts and thrombopoietin measurements for screening purposes. Correlations with values for key indices and viral load were also determined. Strong predictors of HCV infection were found by using receiver operating characteristics curves to analyze the optimal subsets among red blood cells, monocytes, platelet counts, platelet large cell ratios, and mean corpuscular hemoglobin concentrations. Sensitivity, specificity, and area under the receiver operator characteristic curve (P < 0.0001) were 75.6%, 78.5%, and 0.859, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。