We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and μ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated μ-opioid modulation of these synapses and found that activation of μ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts.
μ-Opioid Receptor Modulation of the Glutamatergic/GABAergic Midbrain Inputs to the Mouse Dorsal Hippocampus.
α-阿片受体调节谷氨酸能/GABA能中脑输入到小鼠背侧海马体
阅读:5
作者:Kim Haram R, Dey Soumil, Sekerkova Gabriella, Martina Marco
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2024 | 起止号: | 2024 Oct 23; 44(43):e0653242024 |
| doi: | 10.1523/JNEUROSCI.0653-24.2024 | 种属: | Mouse |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
