Glucagon-like peptide-1 receptor modulates cerebrospinal fluid secretion and intracranial pressure in rats.

胰高血糖素样肽-1受体调节大鼠脑脊液分泌和颅内压

阅读:5
作者:Jensen Mette N, Israelsen Ida M E, Wardman Jonathan H, Jensen Dennis B, Andersen Daniel B, Toft-Bertelsen Trine L, Rath Martin F, Holst Jens Juul, Rosenkilde Mette M, MacAulay Nanna
BACKGROUND: Cerebrospinal fluid (CSF) is produced and absorbed at a balanced rate to maintain a constant intracranial pressure (ICP). The CSF dynamics are, however, disturbed in several pathological conditions, leading to elevated ICP, which may have fatal outcomes if left untreated. Treatment options for these conditions are limited to invasive neurosurgery, and novel pharmacological approaches to manage ICP in pathology are sought. Here, we aimed to demonstrate the potential of the glucagon-like peptide-1 receptor (GLP-1R) as such a target. METHODS: We administered male rats with intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) GLP-1R agonist (exendin-4) or antagonist (exendin-9-39) followed by in vivo determination of CSF dynamics. GLP-1R expression in the CSF-secreting choroid plexus was demonstrated with RNAScope in situ hybridization and western blotting and transporter activity with radio-isotope flux assays. RESULTS: GLP-1R activation increased the CSF secretion rate with an associated elevation of the ICP, whereas inhibition of the receptor reduced the rate of CSF secretion. These effects were observed with central, but not peripheral, administration of the agonist and antagonist, suggesting receptor expression on the luminal, CSF-facing side of the choroid plexus, which aligned with GLP-1R-mediated modulation of luminally-expressed transporters in excised choroid plexus. Low level GLP-1R expression was demonstrated in the choroid plexus at mRNA and protein levels. CONCLUSION: Modulation of GLP-1R affects CSF production, which suggests that GLP-1R-mediated signalling may have the potential to control ICP in pathological conditions with disturbed CSF homeostasis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。