This study investigated the molecular and metabolic responses of the liver to cold-induced thermogenesis. To accomplish that, male Wistar rats were exposed to cold (4°C) for 7 days. Livers were then extracted and used for the determination of glucose and fatty acid oxidation, glycogen content, the expression and content of proteins involved in insulin signaling, as well as in the regulation of gluconeogenesis and de novo lipid synthesis. Despite being hyperphagic, cold-acclimated rats displayed normoglycemia with reduced insulinemia, which suggests improved whole-body insulin sensitivity. However, liver protein kinase B (AKT) and glycogen synthase kinase 3 (GSK3) phosphorylations were markedly reduced along with the expressions of the insulin receptor (IR) and its substrates IRS1 and IRS2, whereas glycogen synthase (GS) phosphorylation increased. Thus, major signaling steps of the glycogen synthesis pathway in the liver were inhibited. Furthermore, glucagonemia and hepatic glucose and fatty acid oxidation were increased, whereas liver glycogen content was reduced by cold acclimation. This was accompanied by significantly elevated expressions of the gluconeogenic transcription regulators CRTC2, PGC-1α, and FoxO1, as well as of major gluconeogenic enzymes (G6Pase, FBP1, and PEPCK). Conversely, phosphorylation and contents of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) content were markedly downregulated in livers of cold-acclimated rats. In conclusion, cold acclimation suppressed hepatic glycogen synthesis and promoted profound metabolic changes in the liver so the organ could sustain its ability to regulate whole-body glucose and lipid metabolism under conditions of high-energy demand in thermogenic tissues.
Cold acclimation reduces hepatic protein Kinase B and AMP-activated protein kinase phosphorylation and increases gluconeogenesis in Rats.
冷适应可降低大鼠肝脏蛋白激酶 B 和 AMP 激活蛋白激酶的磷酸化水平,并增加糖异生作用
阅读:4
作者:Sepa-Kishi Diane M, Katsnelson Glen, Bikopoulos George, Iqbal Ayesha, Ceddia Rolando B
| 期刊: | Physiological Reports | 影响因子: | 1.900 |
| 时间: | 2018 | 起止号: | 2018 Mar |
| doi: | 10.14814/phy2.13592 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
