Systematic genetic perturbation reveals principles underpinning robustness of the epigenetic regulatory network

系统性的基因扰动揭示了表观遗传调控网络稳健性的潜在原理

阅读:4
作者:Thomas Stuart Wilson ,Roberta Noberini ,Eirini Moysidou ,Ifeyinwa Ojukwu ,Marta Milan ,Ming Jiang ,Gavin Kelly ,Michael Howell ,Tiziana Bonaldi ,Paola Scaffidi
The molecular control of epigenetic information relies on hundreds of proteins of diverse function, which cooperate in defining chromatin structure and DNA methylation landscapes. While many individual pathways have been characterized, how different classes of epigenetic regulators interact to build a resilient epigenetic regulatory network (ERN) remains poorly understood. Here, we show that most individual regulators are dispensable for somatic cell fitness, and that robustness emerges from multiple layers of functional cooperation and degeneracy among network components. By disrupting 200 epigenetic regulator genes, individually or in combination, we generated network-wide maps of functional interactions for representative regulators. We found that paralogues represent only a first layer of functional compensation within the ERN, with intra- or inter-class interactions buffering the effects of perturbation in a gene-specific manner: while CREBBP cooperates with multiple acetyltransferases to form a subnetwork that ensures robust chromatin acetylation, ARID1A interacts with regulators from across all functional classes. When combined with oncogene activation, the accumulated epigenetic disorder exposes a synthetic fragility and broadly sensitizes ARID1A-deficient cells to further perturbation. Our findings reveal homeostatic mechanisms through which the ERN sustains somatic cell fitness and uncover how the network remodels as the epigenome is progressively deregulated in disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。