KLF6-mediated recruitment of the p300 complex enhances H3K23su and cooperatively upregulates SEMA3C with FOSL2 to drive 5-FU resistance in colon cancer cells.

KLF6 介导的 p300 复合物募集增强 H3K23su,并与 FOSL2 协同上调 SEMA3C,从而驱动结肠癌细胞产生 5-FU 耐药性

阅读:9
作者:Zhang Bishu, Qi Tuoya, Lin Jiewei, Zhai Shuyu, Wang Xuelong, Zhou Leqi, Deng Xiaxing
Histone lysine succinylation, an emerging epigenetic marker, has been implicated in diverse cellular functions, yet its role in cancer drug resistance is not well understood. Here we investigated the genome-wide alterations in histone 3 lysine 23 succinylation (H3K23su) and its impact on gene expression in 5-fluorouracil (5-FU)-resistant HCT15 colon cancer cells. We utilized CUT&Tag assays to identify differentially enriched regions (DERs) of H3K23su in 5-FU-resistant HCT15 cells via integration with ATAC-seq and RNA sequencing data. The regulatory network involving transcription factors (TFs), notably FOSL2 and KLF6, and their downstream target genes was dissected using motif enrichment analysis and chromatin immunoprecipitation assays. Our results revealed a strong positive correlation between H3K23su DERs, differentially expressed genes (DEGs) and H3K27ac, indicating that H3K23su enrichment is closely related to gene activation. The DEGs associated with the H3K23su GAIN regions were significantly enriched in pathways related to colorectal cancer, including the Wnt, MAPK and p53 signaling pathways. FOSL2 and KLF6 emerged as pivotal TFs potentially modulating DEGs associated with H3K23su DERs and were found to be essential for sustaining 5-FU resistance. Notably, we discovered that FOSL2 and KLF6 recruit the PCAF-p300/CBP complex to synergistically regulate SEMA3C expression, which subsequently modulates the canonical Wnt-β-catenin signaling pathway, leading to the upregulation of MYC and FOSL2. This study demonstrated that H3K23su is a critical epigenetic determinant of 5-FU resistance in colon cancer cells, exerting its effects through the modulation of critical genes and TFs. These findings indicate that interventions aimed at targeting TFs or enzymes involved in H3K23su modification could represent potential therapeutic strategies for treating colorectal cancers that are resistant to 5-FU treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。