Killing of cancer cells by the photoactivatable protein kinase C inhibitor, calphostin C, involves induction of endoplasmic reticulum stress

光激活蛋白激酶 C 抑制剂钙磷抑制剂 C 杀死癌细胞涉及诱导内质网应激

阅读:7
作者:Aparna Kaul, William A Maltese

Abstract

Calphostin C (cal-C) is a photoactivatable inhibitor that binds to the regulatory domain of protein kinase C (PKC) and to other proteins that contain diacylglycerol/phorbol ester binding sites. Cal-C is cytotoxic against many types of cancer cells, yet the basis for this activity remains poorly understood. Here, we show that one of the earliest effects of cal-C is an impairment of glycoprotein export from the endoplasmic reticulum (ER), accompanied by formation of ER-derived vacuoles. Vacuolization of the ER is correlated with induction of an ER stress response that includes activation of c-Jun N-terminal kinase and protein kinase R-like ER kinase, as well as increased expression of CCAAT/enhancer binding protein homologous transcription factor (CHOP; GADD153). These effects of cal-C are not mimicked by staurosporine, an inhibitor of PKC catalytic activity, indicating that ER stress is due to interaction of cal-C with targets other than PKC. In conjunction with the induction of ER stress, breast carcinoma cells undergo caspase-dependent cell death with early activation of caspases 9 and 7 and cleavage of poly(ADP-ribose)polymerase. Reduction of CHOP expression by short hairpin RNA decreases the sensitivity of the cells to cal-C, suggesting that induction of apoptosis by cal-C is related, at least in part, to ER stress triggered by disruption of ER morphology and transport function. Antineoplastic drugs that work by inducting ER stress have shown promise in preclinical and clinical trials. Thus, the present findings raise the possibility that cal-C may be useful for photodynamic therapy based on induction of ER stress in some forms of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。