The human cytomegalovirus UL26 protein antagonizes NF-κB activation

人类巨细胞病毒 UL26 蛋白拮抗 NF-κB 活化

阅读:6
作者:Chun Mathers, Xenia Schafer, Luis Martínez-Sobrido, Joshua Munger

Abstract

Viral infection frequently triggers activation of host innate immune pathways that attempt to limit viral spread. The NF-κB pathway is a critical component that governs this response. We have found that the human cytomegalovirus (HCMV) U(L)26 protein antagonizes NF-κB activation. Upon infection, an HCMV strain lacking the U(L)26 gene (ΔU(L)26) induced the nuclear translocation of the NF-κB RelB subunit and activated expression and secretion of interleukin-6 (IL-6), an NF-κB target gene. The ΔU(L)26 mutant was also more sensitive to challenge with tumor necrosis factor alpha (TNF-α), a canonical NF-κB inducer. Further, expression of U(L)26 in the absence of other viral proteins blocked NF-κB activation induced by either TNF-α treatment or infection with Sendai virus (SeV). Our results indicate that U(L)26 expression is sufficient to block TNF-α-induced NF-κB nuclear translocation and IκB degradation. Last, U(L)26 blocks TNF-α-induced IκB-kinase (IKK) phosphorylation, a key step in NF-κB activation. Combined, our results indicate that U(L)26 is part of a viral program to antagonize innate immunity through modulation of NF-κB signaling. Importance: The NF-κB signaling pathway regulates innate immunity, an integral host process that limits viral pathogenesis. Viruses have evolved mechanisms to modulate NF-κB signaling to ensure their replication. HCMV is a major cause of birth defects and disease in immunosuppressed populations. HCMV is known to actively target the NF-κB pathway, which is important for HCMV infection. Our results indicate that the HCMV U(L)26 gene is a key modulator of NF-κB pathway activity. We find the U(L)26 gene is both necessary and sufficient to block NF-κB activation upon challenge with antiviral cytokines. Further, U(L)26 attenuates the phosphorylation and activation of a key NF-κB activating kinase complex, IKK. Our study provides new insight into how HCMV targets the NF-κB pathway. Given its importance to viral infection, the mechanisms through which viruses target the NF-κB pathway highlight areas of vulnerability that could be therapeutically targeted to attenuate viral replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。