INTRODUCTION: The anterior olfactory nucleus (AON) is a laminar structure embedded within the olfactory peduncle which serves as the conduit for connectivity between the olfactory bulb (OB) and the central processing centers of the brain. The largest portion of the AON is a ring of neurons and fibers that surround the core of the peduncle, the pars principalis (AONpP). The AONpP is further subdivided into an outer plexiform layer, or layer 1 (L1), that contains axons and dendrites, and an inner cell zone, or layer 2 (L2), formed by densely packed pyramidal cells. Relative to other regions of the olfactory system, the development of the AON remains poorly understood. METHODS: We performed injections of thymidine analogs in pregnant mice from E10 to E18 to determine the timeline of AON neurogenesis and used immunohistochemistry to study neuronal phenotypes both at adult and embryonic stages. To better understand migration and differentiation of the AON neurons, we labeled AON precursors using in utero electroporations with the piggyBac transposon into the rostral lateral ganglionic eminence, the embryonic source of AON neurons. RESULTS: Our analyses established that the earliest neurons targeted to the AON laminae arose at E10 with neurogenesis peaking at E13. In L1, we found a caudal-to-rostral neurogenic gradient not detected in L2. Quantification across the cardinal axes showed no gradients in L2 and a medial-to-lateral gradient for L1. Using immunohistochemistry, we found that AON neurons express the most common cortical markers Tbr1, Ctip2, NeuroD1, Sox5 and Cux1+2 at adult stages without laminar distinction. Tbr1 and NeuroD1 first appeared embryonically at E12, while Ctip2 and Sox5 were present at E13, following a dorsal-ventral pattern. Cux1+2 was not detected embryonically. Embryonically, our data on neuroblasts migration revealed that AON neuroblasts use a scaffold of radial glia to migrate to their final destinations in both L1 and L2 through a caudal-to-rostral migratory gradient. CONCLUSION: For the first time, our data show a comprehensive timeline for the AON neurogenesis across the anatomical axes, and a detailed analysis on neuroblast migration in the mouse embryo. These data are crucial to understanding the embryonic formation and relationship of relay stations along the olfactory pathway.
Laminar organization of the anterior olfactory nucleus-the interplay between neurogenesis timing and neuroblast migration.
前嗅核的层状组织——神经发生时间和神经母细胞迁移之间的相互作用
阅读:5
作者:Martin-Lopez Eduardo, Brennan Bowen, Lefèvre Marion, Spence Natalie J, Han Kimberly, Greer Charles A
| 期刊: | Frontiers in Neuroscience | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 30; 19:1546397 |
| doi: | 10.3389/fnins.2025.1546397 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
