Heat stress response in the cave nectar bat Eonycteris spelaea differs from that of Mus musculus.

洞穴蜜蝠(Eonycteris spelaea)的热应激反应与小鼠(Mus musculus)的热应激反应不同

阅读:6
作者:Tang Leon J W, Gamage Akshamal M, Ng Wei Lun, Sia Wan Rong, Foo Randy, Shen Ning Yuan, Chan Wharton O Y, Chen Shiwei, Chen Vivian Chih-Wei, Lim Beng Lee, Tan Chee Wah, Wang Lin-Fa
Bats as the only flying mammals incur a high metabolic cost during extended powered flight, which results in febrile-like temperatures without injury. Herein, we investigate the in vivo heat shock response (HSR) in the cave nectar bat Eonycteris spelaea. We demonstrate that E. spelaea exhibits enhanced physiological heat resistance, marked by reduced lethality, tissue damage and serum corticosterone levels in comparison to mice upon heat challenge. Additionally, E. spelaea did not exhibit an acute transcriptional response observed in heat stressed mice. Instead, bats displayed a delayed and non-canonical HSR that did not involve the activation of classical heat shock related genes and pathways. This altered response in E. spelaea is attributed to the elevated basal expression of heat shock proteins, which we demonstrate to be a common characteristic exhibited by bats from diverse sub-orders, families and diets. Taken together, we demonstrate a distinct HSR in E. spelaea relative to the conventional model organism, mouse, which may provide insights to understand novel regulatory targets and effector proteins that underlie the mammalian heat shock response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。