Therapeutic effects of adipose tissue-derived mesenchymal stem cells on ER stress in a murine model of metabolic dysfunction-associated steatohepatitis: an in vivo and in vitro study.

脂肪组织来源间充质干细胞对代谢功能障碍相关脂肪性肝炎小鼠模型中内质网应激的治疗作用:一项体内和体外研究

阅读:10
作者:Ogawa Norihiko, Seki Akihiro, Nasti Alessandro, Yagi Ho, Yamato Masatoshi, Inui Hiiro, Nomura Hiroki, Komura Takuya, Nakagawa Hidetoshi, Nio Kouki, Takatori Hajime, Shimakami Tetsuro, Honda Masao, Kaneko Shuichi, Sakai Yoshio, Yamashita Taro
BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasing concern due to lifestyle changes, with metabolic dysfunction-associated steatohepatitis (MASH) leading to progressive liver damage, cirrhosis, and increased morbidity. The role of endoplasmic reticulum (ER) stress, particularly the unfolded protein response (UPR) pathway, in MASH progression remains unclear. Adipose tissue-derived stem cells (ADSCs) have shown promise in regenerative therapy; however, their mechanism for alleviating MASH-induced liver damage is not fully understood. In this study, we aimed to investigate the therapeutic mechanism of ADSCs in MASH, focusing on their modulation of ER stress in hepatocytes. METHODS: C57BL/6J mice were fed either an atherogenic high-fat diet (AT + HF) or a high-fat diet (HFD-60) to induce MASH and simple steatosis (SS), respectively. Liver tissues were analyzed for gene expression, protein levels, and apoptotic markers using DNA microarray, quantitative PCR, western blotting, histological staining, and caspase activity assays. ADSCs were harvested, cultured, and treated to assess their effects on ER stress. In vitro experiments investigated palmitic acid-induced ER stress in hepatocytes and the effects of ADSCs on hepatic stellate cells and inflammatory markers. RESULTS: The PERK arm of the UPR pathway was significantly upregulated in MASH liver tissues compared to SS tissues, correlating with increased apoptosis. ADSC administration reduced PERK activation, decreased apoptotic marker expression, and ameliorated hepatic fibrosis. However, ADSCs did not directly attenuate palmitic acid-induced ER stress in hepatocytes in vitro. Instead, they modulated the hepatic microenvironment by reducing hepatic stellate cell activation and IL-17-associated inflammation, indirectly mitigating ER stress and hepatocyte apoptosis. CONCLUSIONS: ADSCs alleviate MASH progression by modulating ER stress via immunomodulation rather than through directly rescuing hepatocytes. These findings highlight the potential of ADSCs as an immunomodulatory therapeutic strategy for MASH and support further investigation into their clinical application.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。