Quantitative Proteomic Study Reveals Amygdalin Alleviates Liver Fibrosis Through Inhibiting mTOR/PDCD4/JNK Pathway in Hepatic Stellate Cells.

定量蛋白质组学研究揭示苦杏仁苷通过抑制肝星状细胞中的 mTOR/PDCD4/JNK 通路缓解肝纤维化

阅读:5
作者:Huang Hui, Ru Su-Jie, Chen Jia-Mei, Liu Wei, Fang Shan-Hua, Liu Qian, Meng Qian, Liu Ping, Zhou Hu
PURPOSE: Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently limited therapy. Amygdalin, a cyanogenic glucoside derived from Semen Persicae, exerts significant anti-fibrotic effects in the liver. However, the molecular mechanism by which amygdalin inhibits the progression of liver fibrosis remains unclear. This study aimed to elucidate the potential mechanism of action of amygdalin against liver fibrosis. METHODS: Quantitative proteomic profiling of the mouse liver tissues from control, carbon tetrachloride (CCl(4))-induced fibrosis, and amygdalin-treated groups was performed to explore the key effector proteins of amygdalin. Histology and immunohistochemistry as well as serum biochemical analysis were performed to evaluate amygdalin efficacy in mice. The key gene programmed cell death protein 4 (PDCD4) was overexpressed or knocked down in human hepatic stellate cells (HSCs). The mRNA and protein levels of related molecules were detected by RT-qPCR and Western blotting, respectively. RESULTS: Amygdalin could effectively ameliorated CCl(4)-induced liver fibrosis in mice. Bioinformatics analysis revealed that PDCD4 was downregulated in CCl(4)-induced liver fibrosis, but amygdalin treatment reversed these changes. An in vitro study showed that PDCD4 inhibited the activation of human hepatic stellate cell line LX-2 cells by regulating the JNK/c-Jun pathway and amygdalin inhibited the activation of LX-2 cells in a PDCD4-dependent manner. We further found that amygdalin inhibited the phosphorylation of PDCD4 at Ser67 by inhibiting the mTOR/S6K1 pathway to enhance PDCD4 expression. CONCLUSION: Our data demonstrated a potential pharmaceutical mechanism by which amygdalin alleviates liver fibrosis by inhibiting the mTOR/PDCD4/JNK pathway in HSCs, suggesting that PDCD4 is a potential target for the treatment of liver fibrosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。