Background/Objectives: Dry eye disease (DED) is a multifactorial inflammatory disease that disrupts the ocular surface, causing tear film instability, epithelial damage, and chronic inflammation. Mesenchymal stem cell-derived exosomes (MSC-exos) are promising therapeutics with immunomodulatory and regenerative properties. This study investigates the therapeutic effects of umbilical cord MSC-derived exosomes (UCMSC-exos) in a severe dry eye model, induced by a surgical resection of the infra-orbital (ILG) and extra-orbital lacrimal gland (ELG) in rats. Methods: Clinical evaluations, including tear volume measurement, slit lamp biomicroscopy, fluorescein staining, and spectral domain optical coherence tomography (SD-OCT), were performed to assess corneal neovascularization, corneal abrasion, and epithelial/stromal thickness. Histopathological analysis, immunohistochemistry, and mRNA gene expression were conducted to evaluate corneal tissue changes and inflammatory marker expression. Results: The results show that the treatment group exhibited significantly reduced corneal neovascularization compared to the control group (p = 0.030). During the first month, the Exo group also had a significantly lower corneal fluorescein staining area (p = 0.032), suggesting accelerated wound healing. SD-OCT analysis revealed that the corneal epithelial thickness in the treatment group was closer to normal levels compared to the control group (p = 0.02 and p = 0.006, respectively). UCMSC-exos treatment also modulated the expression of α-SMA and apoptosis in the cornea. Additionally, the gene expression of inflammatory cytokines (IL-1β and TNF-α) were downregulated. Conclusions: These findings suggest that MSC-exosome therapy offers a novel, cell-free regenerative approach for managing severe DED, modulating inflammatory response.
Therapeutic Potential of Umbilical Cord MSC-Derived Exosomes in a Severe Dry Eye Rat Model: Enhancing Corneal Protection and Modulating Inflammation.
脐带间充质干细胞来源的外泌体在严重干眼大鼠模型中的治疗潜力:增强角膜保护和调节炎症
阅读:8
作者:Chan Sze-Min, Tsai Chris, Lee Tai-Ping, Huang Zih-Rou, Huang Wei-Hsiang, Lin Chung-Tien
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 11; 13(5):1174 |
| doi: | 10.3390/biomedicines13051174 | 种属: | Rat |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
