Effective communication between the brain and peripheral tissues is crucial for homeostasis and health, and its impairment is a defining feature of aging. Circumventricular organs, characterized by the presence of fenestrated capillaries and absence of a blood-brain barrier (BBB), play a crucial role in controlling substance exchange between the brain and the blood. To date, adaptive changes in fenestrated vasculature in response to environmental insults remain poorly understood. In this study, we show that fenestrated capillaries in the median eminence (ME) and area postrema (AP)-two distinct circumventricular organs critical for metabolic control-undergo differential remodeling when exposed to circulating monosodium glutamate (MSG), a BBB-impermeable neurotoxin. Upon MSG exposure, fenestrated capillaries and vascular permeability were decreased in the ME but increased in the AP, and these changes were closely associated with the expression of angiogenic factors pleiotrophin (Ptn) and vascular endothelial growth factor A (Vegfa). In both ME and AP, adult tanycytes expressed high levels of Ptn and have processes in close contact with fenestrated capillaries. Significantly, the adaptive regulation of Ptn expression and the ability to modulate fenestrated capillaries and vascular permeability were abolished in both ME and AP of aged animals. Together, our findings suggest that tanycytic expressions of the angiogenic factor PTN, in conjunction with VEGF, are differentially regulated in distinct circumventricular organs upon exposure to neurotoxins, leading to region-specific remodeling of fenestrated endothelium. Our study further demonstrates that the loss of plasticity in fenestrated vasculature may be a hallmark feature of brain aging.
Modulation of fenestrated vasculature in the median eminence and area postrema in response to neurotoxin exposure and its impairment in aging.
神经毒素暴露对正中隆起和后极区有孔血管的调节及其在衰老过程中的损害
阅读:9
作者:Pham Viana Q, Tutunculer Melike, Al-Dulaimi Halah, Ardjmand Daniel, Fleischmann William, Bachor Tomas P, Xu Allison W
| 期刊: | Frontiers in Aging Neuroscience | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Aug 19; 17:1634283 |
| doi: | 10.3389/fnagi.2025.1634283 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
