Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, necessitating the development of effective preventive strategies. Fenugreek (Trigonella foenum-graecum) possesses well-documented pharmacological properties; however, its chemopreventive potential in colorectal cancer (CRC) remains unexplored. This study evaluates the efficacy of methanolic fenugreek seed extract (FSE) in an azoxymethane (AOM)-induced murine colorectal cancer (CRC) model, focusing on the modulation of oxidative stress, regulation of biomarkers, induction of apoptosis, and maintenance of epithelial integrity. Methods: FSE was extracted using cold maceration (yield: 24%) and analyzed by gas chromatography-mass spectrometry (GC-MS), identifying 13 bioactive compounds, including benzene, 1,3-dimethyl-; 1,3-cyclopentadiene, 5-(1-methylethylidene)-; o-Xylene; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-; and benzene, 1,2,3-trimethyl-. All 13 compounds identified were matched with the NIST library with high confidence. Molecular docking was used to assess the interactions of FSE bioactives with E-cadherin-β-catenin complexes. Swiss albino mice received an FSE pre-treatment before AOM induction and continued this treatment three times weekly for 21 weeks. Key assessments included survival analysis, body weight changes, serum biomarker levels (GGT, 5'-NT, LDH), antioxidant enzyme activities (SOD, CAT, GPx1, MDA), reactive oxygen species (ROS) quantification, apoptosis detection via flow cytometry, and immunofluorescence-based evaluation of E-cadherin dynamics. Results: FSE improved survival rates, mitigated AOM-induced weight loss, and dose-dependently reduced serum biomarker levels. Antioxidant enzyme activity was restored, while MDA levels declined. A dose-dependent increase in ROS facilitated apoptosis, as confirmed by flow cytometry (16.7% in the low-dose FSE group and 34.5% in the high-dose FSE group). Immunofluorescence studies revealed that FSE-mediated restoration of E-cadherin localization counteracted AOM-induced epithelial disruptions. Conclusions: FSE exhibits potent chemopreventive potential against CRC by modulating oxidative stress, regulating key biomarkers, inducing apoptosis, and restoring epithelial integrity. These findings support further investigations into its clinical relevance for CRC prevention.
Preclinical and Molecular Docking Insights into the Chemopreventive Role of Fenugreek Seed Extract in a Murine Model of Colorectal Cancer.
临床前和分子对接研究揭示胡芦巴籽提取物在小鼠结直肠癌模型中的化学预防作用
阅读:6
作者:Khan Arif, Allemailem Khaled S, Alradhi Arwa Essa, Azam Faizul
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 28; 18(4):490 |
| doi: | 10.3390/ph18040490 | 研究方向: | 肿瘤 |
| 疾病类型: | 肠癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
