BACKGROUND: MRP8/14, a calcium-binding protein of the S100 family, is predominantly expressed in myeloid cells and exhibits proinflammatory and prothrombotic properties. Platelet-neutrophil interactions can trigger MRP8/14 release, but their role in atherosclerosis (AS) remains unclear. AIMS: To investigate the effect of MRP8/14 on AS progression and the underlying mechanisms involved, focusing on neutrophil activation and the toll-like receptor 4 (TLR4)-ERK1/2-p90RSK and NRF2-ARE pathways. STUDY DESIGN: Ex vivo and animal study. METHODS: Neutrophils isolated from mouse bone marrow were stimulated with P-selectin to induce MRP8/14 release, which was subsequently quantified using ELISA. Neutrophil extracellular traps (NET) formation was induced by phobolol 12-myristate 13-acetate, and Mrp8/14 expression was examined via fluorescence labeling. Cytokine release and CD11b expression were assessed using flow cytometry. An AS mouse model was established by administering a high-fat diet. Atherosclerotic plaque size was analyzed using Oil Red O staining. Proteins from the TLR4-ERK1/2-p90RSK and NRF2-ARE pathways were analyzed by Western blotting. RESULTS: P-selectin induced MRP8/14 release, which was inhibited by P-selectin antagonists. NET formation also contributed to MRP8/14 secretion. hMRP8/14 treatment enhanced CD11b expression, neutrophil adhesion, and proinflammatory cytokine secretion. In AS mice, MRP8/14 secretion was linked to TLR4 upregulation, ERK1/2-p90RSK signaling activation, and NRF2-ARE pathway inhibition. Paquinimod, an MRP8/14 antagonist, mitigated neutrophil activation, inflammation, and arterial plaque formation. CONCLUSION: MRP8/14 secreted from neutrophils activates the ERK1/2-p90RSK pathway via TLR4 and suppresses the NRF2-ARE pathway, driving inflammation and promoting AS progression.
Mechanism of Neutrophil p90RSK-Nrf2 Signaling Pathway in Atherosclerosis.
中性粒细胞 p90RSK-Nrf2 信号通路在动脉粥样硬化中的作用机制
阅读:16
作者:Li Jiawen, Wang Lei, Liang Xiao, Li Xiaoxia
| 期刊: | Balkan Medical Journal | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 42(4):347-357 |
| doi: | 10.4274/balkanmedj.galenos.2025.2025-4-73 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
