BACKGROUND: Trigeminal neuralgia (TN), a debilitating neuropathic pain disorder, is characterized by demyelination and neuroinflammation, with limited therapies addressing its underlying pathophysiology. Bone Morphogenetic Protein 4 (BMP4) signaling and chemokine CCL5 are implicated in neuroinflammation and oligodendrocyte dysfunction, presenting potential therapeutic targets. METHODS: Peptide nanomicelles loaded with the BMP4 inhibitor DMH1 (NM@DMH1) were synthesized and characterized for stability, drug release kinetics, and biocompatibility. In vitro studies assessed oligodendrocyte progenitor cell (OPC) differentiation and anti-inflammatory effects in lipopolysaccharide-induced models. A rat TN model (chronic infraorbital nerve compression) evaluated NM@DMH1's efficacy in alleviating mechanical allodynia, demyelination, and neuroinflammation. Mechanistic roles of CCL5 were explored using recombinant protein supplementation. RESULTS: NM@DMH1 exhibited uniform nanostructure (120 nm), high encapsulation efficiency (82%), and pH-responsive sustained release. Treatment enhanced OPC differentiation, reduced pro-inflammatory cytokines (IL-6, TNF-α, IL-1β), and suppressed CCL5 expression in vitro. In TN rats, NM@DMH1 significantly attenuated mechanical pain hypersensitivity (p < 0.01 vs model), restored myelin markers (MBP, MOG), and inhibited neuroinflammatory infiltration. CCL5 supplementation reversed therapeutic benefits, confirming its pivotal role. CONCLUSION: NM@DMH1 represents a nanotechnology-driven strategy targeting TN pathogenesis by promoting remyelination and suppressing CCL5-mediated neuroinflammation. This study advances precision drug delivery for neuropathic pain and highlights CCL5 as a novel therapeutic node, offering translational potential for TN and related neuroinflammatory disorders.
DMH1-loaded peptide nanomicelles restore myelin and attenuate neuroinflammation in trigeminal neuralgia via CCL5 suppression.
DMH1负载肽纳米胶束通过抑制CCL5来恢复三叉神经痛中的髓鞘并减轻神经炎症
阅读:12
作者:Xia Shuangyin, Qin Xiunan, Wang Yaping
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 6; 16:1590624 |
| doi: | 10.3389/fphar.2025.1590624 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
