Broadly Applicable Bispecific Linker Approach to Noncovalently Target Therapeutic Nanoparticles to Tumor Cells Expressing Carcinoembryonic Antigen.

一种广泛适用的双特异性连接子方法,可将治疗性纳米颗粒非共价靶向表达癌胚抗原的肿瘤细胞

阅读:5
作者:Fernando Ann, Sparkes Amanda, Matus Esther I, Patel Ayushi, Foster F Stuart, Goertz David, Lee Peter, Gariépy Jean
Design strategies that lead to a more focused in vivo delivery of functionalized nanoparticles (NPs) and their cargo can potentially maximize their therapeutic efficiency while reducing systemic effects, broadening their clinical applications. Here, we report the development of a noncovalent labeling approach where immunoglobulin G (IgG)-decorated NPs can be directed to a cancer cell using a simple, linear bispecific protein adaptor, termed MFE23-ZZ. MFE23-ZZ was created by fusing a single-chain fragment variable domain, termed MFE23, recognizing carcinoembryonic antigen (CEA) expressed on tumor cells, to a small protein ZZ module, which binds to the Fc fragment of IgG. As a proof of concept, monoclonal antibodies (mAbs) were generated against a NP coat protein, namely, gas vesicle protein A (GvpA) of Halobacterium salinarum gas vesicles (GVs). The surface of each GV was therapeutically derivatized with the photoreactive agent chlorin e6 (Ce6GVs) and anti-GvpA mAbs were subsequently bound to GvpA on the surface of each Ce6GV. The bispecific ligand MFE23-ZZ was then bound to mAb-decorated Ce6GVs via their Fc domain, resulting in a noncovalent tripartite complex, namely, MFE23.ZZ-2B10-Ce6GV. This complex enhanced the intracellular uptake of Ce6GVs into human CEA-expressing murine MC38 colon carcinoma cells (MC38.CEA) relative to the CEA-negative parental cell line MC38 in vitro, making them more sensitive to light-induced cell killing. These results suggest that the surface of NP can be rapidly and noncovalently functionalized to target tumor-associated antigen-expressing tumor cells using simple bispecific linkers and any IgG-labeled cargo. This noncovalent approach is readily applicable to other types of functionalized NPs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。