Optimization and Standardization of Stable De-Epidermized Dermis (DED) Models for Functional Evaluation of Cutaneous Cell Therapies.

优化和标准化稳定的去表皮真皮(DED)模型,用于皮肤细胞疗法的功能评估

阅读:5
作者:Chen Xi, Scaletta Corinne, Liao Zhifeng, Laurent Alexis, Applegate Lee Ann, Hirt-Burri Nathalie
The human skin is a remarkable organ capable of extensive regeneration, especially after severe injuries such as burns and related wounds. The de-epidermized dermis (DED) model has become a valuable in vitro tool for skin regeneration studies, particularly for testing the mechanism of action and the efficacy of clinical cutaneous cell therapies. To further improve the quality and robustness of these applications, our study focused on optimizing and standardizing DED tissue preparation and storage, enhancing its effectiveness for clinical testing. Therefore, we optimized the air-liquid interfacial culture medium composition by simplifying the historical formulation without compromising keratinocyte (therapeutic cell model) viability or proliferation. Furthermore, we investigated the impacts of adding burn wound exudates in the model by focusing on cell behavior for enhanced translational significance. The results revealed notable differences in keratinocyte adhesion and proliferation between burn wound exudates collected at the early stages and late stages of acute patient treatment, providing new information on a possible therapeutic window to apply cell therapies on burn patients. Generally, this study reported a robust method for the preclinical in vitro assessment of keratinocyte-based cutaneous cell therapies using DED models. Overall, the study underscored the importance of using in vitro models with enhanced translational relevance to better predict the clinical effects of cutaneous cell therapies in burn patient populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。