Extracellular vesicles derived from salivary gland stem cells cultured on microwell scaffolds loaded with WNT3A promote the recovery of salivary gland function damaged by radiation via the YWHAZ-PI3K-AKT pathway.

在载有 WNT3A 的微孔支架上培养的唾液腺干细胞衍生的细胞外囊泡,通过 YWHAZ-PI3K-AKT 通路促进受辐射损伤的唾液腺功能的恢复

阅读:9
作者:Cho Jae-Min, Ahn Sujeong, Yoon Yeo-Jun, Park Sunyoung, Lee Hyeon Song, Hwang Seungyeon, Jeong Ye Jin, Hong Yongpyo, Seo Sunyoung, Kim Dohyun, Jung Hyo-Il, Koh Won-Gun, Lim Jae-Yol
Salivary gland (SG) stem cell-derived extracellular vesicles (EVs) are promising agents for regenerative therapy, but efficient production and targeted delivery remain key challenges. We developed a WNT3A-releasing double-layered microwell scaffold by integrating WNT3A-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanofibers with a polycaprolactone (PCL)-based microwell array. This 3D platform promotes salivary gland epithelial stem cell (sgEpSC) spheroid formation and sustained biochemical stimulation. EVs derived from four culture conditions (2D dish, 3D Microwell, 3D PLGA-Microwell, and 3D WNT-Microwell) were analyzed for yield, purity, and therapeutic efficacy. The WNT-Microwell system enabled stable spheroid formation and sustained WNT3A release over 7 days. sgEpSCs cultured on this platform produced significantly higher EV yields than other conditions. In a murine model of radiation-induced SG damage, retroductal injection of EVs from 3D spheroids cultured in WNT3A-releasing microwells (3D(WNT)-EVs) reduced apoptosis, preserved acinar structures, and restored saliva secretion more effectively than other groups. In irradiated human SG organoids, 3D(WNT)-EVs increased organoid size, mucin production, and suppressed cleaved caspase-3. Proteomic analysis identified YWHAZ (14-3-3ζ/δ) as a key regenerative cargo. Functional assays showed that EV-mediated delivery of YWHAZ activated PI3K-AKT signaling, enhanced SG progenitor proliferation, and mitigated radiation-induced damage. WNT-Microwell scaffolds enhance the yield and regenerative efficacy of SG-derived EVs. YWHAZ-enriched EVs promote SG repair via PI3K-AKT activation, offering a promising strategy for scalable, cell-free regenerative therapy in SG dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。