Salt stress-accelerated proteasomal degradation of LBD11 suppresses ROS-mediated meristem development and root growth in Arabidopsis.

盐胁迫加速 LBD11 的蛋白酶体降解抑制拟南芥中 ROS 介导的分生组织发育和根系生长

阅读:6
作者:Dang Tuong Vi T, Cho Hyun Seob, Lee Seungchul, Hwang Ildoo
Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Particularly sensitive to soil salinity, a major abiotic stress, roots face significant challenges that threaten global agriculture. In response to salt stress, plants suppress root meristem size, thereby reducing root growth. However, the mechanisms underlying this growth restriction remain unclear. Here, we investigate the role of reactive oxygen species (ROS) in this process and reveal that LATERAL ORGAN BOUNDARIES DOMAIN 11 (LBD11) plays a central role in ROS-mediated regulation of meristem size and the salt stress-induced inhibition of root growth. Under normal conditions, LBD11 controls the expression of key ROS metabolic genes, maintaining ROS homeostasis within root developmental zones to control meristem size and overall root growth. Upon sensing salt stress, LBD11 undergoes rapid proteasome-mediated degradation, leading to decreased distribution of O(2)(⋠)(-), which in turn curtails meristem size and limits root length. Our findings highlight an unexplored plant adaptation strategy, where the growth-promoting LBD11/ROS pathway is downregulated to finely regulate root growth under challenging conditions. We propose a strategy for developing crops with heightened resilience and increased yields in salt-affected environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。