Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been found to promote the progression of acute pancreatitis (AP). However, its underlying molecular mechanisms in AP need to be further revealed. Caerulein-induced AR42J cells were used to construct AP cell models. Cell viability and apoptosis were measured by Cell Counting Kit 8 assay and flow cytometry. Levels of inflammatory factors and oxidative stress-related markers were assessed. The medium of AR42J cells was collected for coculturing RAW264.7 cells. Macrophage marker CD86(+) cell rates were checked with flow cytometry. The levels of TRAF6, embryonic lethal abnormal visual-like protein 1 (ELAVL1), and inducible nitric oxide synthase (iNOS) were examined by Western blot or quantitative real-time polymerase chain reaction. RNA immunoprecipitation assay was performed to evaluate the interaction between ELAVL1 and TRAF6. TRAF6 mRNA stability was tested using actinomycin D treatment. Caerulein treatment suppressed viability, induced AR42J cell apoptosis, inflammation, oxidative stress, and accelerated macrophage M1 polarization. TRAF6 downregulation could alleviate caerulein-induced AR42J cell injury and macrophage M1 polarization. ELAVL1 interacted with TRAF6 to stabilize its expression. Meanwhile, ELAVL1 knockdown relieved caerulein-induced AR42J cell injury and macrophage M1 polarization, while these effects were abolished by TRAF6 overexpression. TRAF6, stabilized by ELAVL1, promoted caerulein-induced AR42J cell injury and macrophage M1 polarization, suggesting that it might accelerate AP9 progression.
Embryonic Lethal Abnormal Visual-Like Protein 1 Aggravates Caerulein-Induced AR42J Cell Injury and Macrophage M1 Polarization to Accelerate Acute Pancreatitis by Upregulating TRAF6.
胚胎致死异常视觉样蛋白 1 加剧胰泌素诱导的 AR42J 细胞损伤和巨噬细胞 M1 极化,通过上调 TRAF6 加速急性胰腺炎
阅读:6
作者:Zhou Wenyong, Wang Xin, Yan Bin, Sun Yue
| 期刊: | Journal of Interferon and Cytokine Research | 影响因子: | 1.800 |
| 时间: | 2025 | 起止号: | 2025 Jan;45(1):20-28 |
| doi: | 10.1089/jir.2024.0149 | 靶点: | TRAF6 |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
