Dominant negative ATP5F1A variants disrupt oxidative phosphorylation causing neurological disorders.

显性负性 ATP5F1A 变体破坏氧化磷酸化,导致神经系统疾病

阅读:4
作者:Fielder Sara M, Friederich Marisa W, Hock Daniella H, Zhang Jessie R, Valin Liana M, Rosenfeld Jill A, Booth Kevin T A, Brown Natasha J, Rius Rocio, Sharma Tanavi, Semcesen Liana N, Worley Kim C, Burrage Lindsay C, Treat Kayla, Samson Tara, Govert Sarah, DaCunha Sara, Yuan Weimin, Chen Jian, Lesinski Jacob, Hoang Hieu, Morrison Stephanie A, Ladha Farah A, Van Hove Roxanne A, Michel Cole R, Reisdorph Richard, Tycksen Eric, Baldridge Dustin, Silverman Gary A, Soler-Alfonso Claudia, Conboy Erin, Vetrini Francesco, Emrick Lisa, Craigen William J, Sykes Stephen M, Stroud David A, Van Hove Johan L K, Schedl Tim, Pak Stephen C
ATP5F1A encodes the α-subunit of complex V of the respiratory chain, which is responsible for mitochondrial ATP synthesis. We describe 6 probands with heterozygous de novo missense ATP5F1A variants that presented with developmental delay, intellectual disability, and movement disorders. Functional evaluation in C. elegans revealed that all variants tested were damaging to gene function via a dominant negative genetic mechanism. Biochemical and proteomics studies showed a marked reduction in complex V abundance and activity in proband-derived blood cells and fibroblasts. Mitochondrial physiology studies in fibroblasts revealed increased oxygen consumption, yet decreased mitochondrial membrane potential and ATP levels indicative of uncoupled oxidative phosphorylation as a pathophysiologic mechanism. Our findings contrast functionally and clinically with the previously reported ATP5F1A variant, p.Arg207His, suggesting a distinct pathological mechanism. This study therefore expands the phenotypic and genotypic spectrum of ATP5F1A-associated conditions and highlights how functional studies can provide understanding of the genetic, molecular, and cellular mechanisms of ATP5F1A variants of uncertain significance. With 12 heterozygous individuals now reported, ATP5F1A is the most frequent nuclear genome cause of complex V deficiency.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。