The effects of systemic and sustained hypoxia on orthodontic tooth movement in rats.

全身性和持续性缺氧对大鼠正畸牙齿移动的影响

阅读:5
作者:Ploysongsang Kwanrat, Kobayashi Yukiho, Lu Yeming, Niki Yuki, Chavanavesh Janeta, Moriyama Keiji
During orthodontic tooth movement (OTM), local hypoxia on the compression side stimulates cellular remodelling of periodontal tissues. We investigated the effects of systemic, sustained hypoxia on OTM in vivo. OTM was performed on the right maxillary first molar (M1) of 8-week-old male Sprague-Dawley rats using a 10-gf nickel-titanium closed-coil spring for 4 weeks under control (21% O(2), n = 9) or hypoxic (10% O(2), n = 9) conditions. Micro-computed tomography was used to measure OTM distances, alveolar bone morphometric parameters, and M1 buccal alveolar bone levels. Osteoclast differentiation and periodontal ligament (PDL) cell proliferation were determined using tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemistry, respectively. Runt-related transcription factor 2 (RUNX2) and vascular endothelial growth factor (VEGF) expression in M1 periodontal tissues were analysed using immunofluorescence. The hypoxia-OTM group showed significantly accelerated tooth movement, significantly decreased M1 buccal alveolar bone levels, significantly greater numbers of TRAP-positive cells on the compression side, and significantly reduced Ki67-positive ratios in PDL tissues. The VEGF and RUNX2 fluorescence intensities on the tension side were higher in the control-OTM than in the hypoxia-OTM group. Our results demonstrate that systemic, sustained hypoxia affects OTM by altering osteoclast and osteoblast differentiation in vivo, resulting in reduced alveolar bone levels after OTM.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。