New Insights on the Formation of the Mitral Valve Chordae Tendineae in Fetal Life.

关于胎儿期二尖瓣腱索形成的新见解

阅读:12
作者:Martin Meghan, Gillett Kate, Whittick Parker, Wells Sarah Melissa
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during fetal development remains unknown. The current study presents a detailed description of bovine chordae tendineae formation and bifurcation during fetal development. Analysis of Movat Pentachrome-stained histological sections of the developing mitral valve apparatus was accompanied by micro-CT imaging. TEM imaging of chordae branches and common trunks allowed the measurement of collagen fibril diameter distributions. We observed a proteoglycan-rich "transition zone" at the junction between the fetal mitral valve anterior leaflet and chordae tendineae with "perforations" lined by MMP1/2 and Ki-67 expressing endothelial cells. This region also contained clusters of proliferating endothelial cells within the bulk of the tissue. We hypothesize this zone marks a region where chordae tendineae bifurcate during fetal development. In particular, perforations created by localized MMP activity serve as a site for the initiation of a "split" of a single chordae attachment into two. This is supported by TEM results that suggest a similar population of collagen fibrils runs from the branches into a common trunk. A clear understanding of normal mitral valvulogenesis and its signaling mechanisms will be crucial in developing therapeutics and/or tissue-engineered valve replacements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。