The mechanosensitive channel ELKIN1 regulates cellular adaptations to simulated microgravity.

机械敏感通道 ELKIN1 调节细胞对模拟微重力的适应

阅读:9
作者:Wang Daphne, Silvani Giulia, Schroeter Lioba, Brynn Remi, Chou Joshua, Poole Kate
In conditions of microgravity the human body undergoes extensive alterations in physiological function. However, it has proven challenging to determine how these changes are mediated at the molecular and cellular level. Here, we investigated whether ELKIN1, a mechanically activated ion channel, regulates changes in cellular and molecular structures in conditions of simulated microgravity. Deletion of ELKIN1 inhibited the simulated microgravity-induced alterations of cellular structure and attachment. In addition, cells lacking ELKIN1 did not exhibit changes in focal adhesion structures and redistribution of the YAP1 transcription factor in response to simulated microgravity, consistent with wild type cells. Finally, melanoma cell invasion of a collagen gel, from organotypic spheroids, was reduced in simulated microgravity, in an ELKIN1 dependent manner. Thus, the force sensing molecule, ELKIN1, modulates the impact of microgravity at both the molecular and cellular levels, revealing one of the molecular mechanisms that underpins cellular adaptations to conditions of microgravity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。