PURPOSE: Glaucoma is the leading cause of irreversible blindness worldwide and is associated with high intraocular pressure (IOP). Schlemm's canal (SC), a hybrid vessel present in the anterior part of the eye, is known to control IOP by draining aqueous humor into the systemic circulation. Formation and function of SC is supported by the tyrosine kinase receptor Tie2. Likewise, inhibition of the vascular endothelial protein tyrosine phosphatase (VE-PTP), which associates with Tie2 has similar effects. However, VE-PTP also targets VE-cadherin and several other substrates. Here, we analyzed whether Tie2 is indeed the major substrate which is responsible for the role of VE-PTP in SC function. In addition, we analyzed the function of VE-PTP in SC of the aged eye in mice. METHODOLOGY: We tested the effects of the VE-PTP inhibitor AKB9778 and of VE-PTP gene inactivation on SC area and IOP in WT and in Tie2iLEC/SC-KO and VE-cadherin-Y685F mutant mice. RESULTS: Pharmacologic inhibition of VE-PTP with AKB9778 increased SC area only in mice expressing Tie2. The VE-cadherin-Y685F mutation had neither an effect on SC area nor on the effects of AKB9778 on SC formation. Induced VE-PTP gene inactivation in adult mice had similar effects as AKB9778. Furthermore, we could show that AKB9778 improved SC function in aged mice as judged by increasing SC area and lowering of IOP. CONCLUSION: Interference with VE-PTP function improves SC function in a strictly Tie2 dependent way and pharmacologic inhibition of VE-PTP with AKB9778 is a promising approach for improving SC function in the aged eye.
Inhibition of VE-PTP rejuvenates Schlemm's canal in aged mice and acts via Tie2.
抑制 VE-PTP 可使老年小鼠的施莱姆氏管恢复活力,并通过 Tie2 发挥作用
阅读:4
作者:Mishra Sarthak, Ipe Ute, Nottebaum Astrid F, Peters Kevin G, Vestweber Dietmar
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 May 16; 20(5):e0323615 |
| doi: | 10.1371/journal.pone.0323615 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
