PURPOSE: Retinal ischemia/reperfusion (IR) injury caused by pathologically high intraocular pressure (ph-IOP) induces excessive inflammation, contributing to retinal ganglion cell (RGC) death in glaucoma. Lowering IOP alone is insufficient, highlighting the need for neuroprotective strategies. Resveratrol (RSV) exhibits anti-inflammatory and neuroprotective effects, but its molecular mechanisms remain unclear. This study aims to evaluate RSV's neuroprotective role and underlying mechanisms in retinal IR injury. METHODS: Retinal morphology and RGC survival were assessed via immunofluorescence and hematoxylin and eosin (H&E) staining. Retinal function was evaluated using flash visual evoked potential (F-VEP) and flash electroretinogram (F-ERG). Inflammation and microglial activation were analyzed by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Pyroptosis and apoptosis were examined using Western blotting, TUNEL staining, and electron microscopy. RNA sequencing, qRT-PCR, and Western blotting identified molecular pathways. RESULTS: RSV significantly protected RGCs and preserved retinal function. It reduced inflammation by inhibiting microglial activation and redistribution. Electron microscopy confirmed its protective effects against apoptosis and pyroptosis. Most importantly, we identified the Bcl3/NF-κB p50 pathway as a key target of RSV. Using the Bcl3-NF-κB p50-specific inhibitor JS-6, we validated this pathway's role in reducing neuroinflammation, pyroptosis, and apoptosis. CONCLUSIONS: This study provides insights into RSV's molecular mechanisms and identifies new therapeutic targets for glaucoma.
Targeting Bcl3/NF-κB p50 Pathway for Neuroinflammation Attenuation and RGCs Protection in Retinal Ischemia/Reperfusion Injury.
靶向 Bcl3/NF-κB p50 通路以减轻视网膜缺血/再灌注损伤中的神经炎症并保护 RGCs
阅读:6
作者:Chen Meini, Zhang Xuan, Zeng Zhou, Fan Cong, Chen Si, Quan Chao, Chen Jiachang, You Mengling, Xia Xiaobo
| 期刊: | Investigative Ophthalmology & Visual Science | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Sep 2; 66(12):63 |
| doi: | 10.1167/iovs.66.12.63 | 研究方向: | 神经科学 |
| 信号通路: | NF-κB | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
