Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting.

顺式棕榈油酸通过二酰甘油代谢分流调节脂质代谢

阅读:5
作者:Huang Wenwen, Gao Bei, Liu Longxiang, Song Qi, Wei Mengru, Li Hongzhen, Sun Chunlong, Li Wang, Du Wen, Shan Jinjun
Obesity and related metabolic disorders are closely linked to dysregulated lipid metabolism, where the metabolic balance of diacylglycerol (DAG) played a pivotal role. Although cis-palmitoleic acid (cPOA) exhibits anti-obesity effects, its efficacy varies across dietary conditions, and its molecular mechanisms remains unclear. In this study, we investigated the dose-dependent regulatory effects of cPOA on DAG metabolic shunting in db/db mice, employing lipidomics, pathway analysis, and gene/protein expression assays. Under a basal diet, low-dose cPOA (75 mg/kg) inhibited DAG-to-triglyceride (TAG) conversion, reducing hepatic lipid accumulation, while medium-to-high doses (150-300 mg/kg) redirected DAG flux toward phospholipid metabolism pathways (e.g., phosphatidylcholine [PC] and phosphatidylethanolamine [PE]), significantly lowering body weight and adiposity index. In high-fat diet (HFD)-fed mice, cPOA failed to reduce body weight but alleviated HFD-induced hepatic pathological damage by suppressing DAG-to-TAG conversion and remodeling phospholipid metabolism (e.g., inhibiting PE-to-PC conversion). Genetic and protein analyses revealed that cPOA downregulated lipogenic genes (SREBP-1c, SCD-1, FAS) and upregulated fatty acid β-oxidation enzymes (CPT1A, ACOX1), while dose-dependently modulating DGAT1, CHPT1, and PEMT expression to drive DAG metabolic shunting. Notably, DAG(36:3, 18:1-18:2) emerged as a potential biomarker for HFD-aggravated metabolic dysregulation. This study elucidated cPOA as a bidirectional regulator of lipid synthesis and oxidation, improving lipid homeostasis through dose-dependent DAG metabolic reprogramming. These findings provide novel insights and strategies for precision intervention in obesity and related metabolic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。