Living myocardial slices as a model for testing cardiac pro-reparative gene therapies.

以活体心肌切片为模型,测试心脏促修复基因疗法

阅读:5
作者:Caliandro Rocco, Husetić Azra, Ligtermoet Merel L, Boender Arie R, Zentilin Lorena, Boink Gerard J J, Giacca Mauro, Gladka Monika M
Available models currently adopted for preclinical studies in the cardiovascular field either fail to recapitulate human cardiac physiology or are extremely expensive and time-consuming. Translational research would greatly benefit from the development of novel models that reflect the native mature phenotype of the human heart while being cost and time effective. Living myocardial slices (LMSs) have emerged as a novel, powerful ex vivo tool for translational research. Although the number of studies adopting LMSs is rapidly increasing, this model remains largely under-characterized. In this study, we make use of LMSs and compare them to a murine model to deliver the cardioprotective factor zinc finger E box-binding homeobox 2 (ZEB2), a transcription factor known to exert cardioprotective effects after ischemic injury and promote the secretion of pro-angiogenetic factors thymosin beta-4 (TMSB4) and prothymosin alpha (PTMA). Our data show that viral-mediated delivery of these factors induced similar cardiomyocyte gene expression changes in LMS and mouse models. We also show that the delivery of these pro-angiogenic factors enhances an angiogenic response in both models, indicating that LMSs are a suitable alternative to mice for studying the effects of gene transfer in various cardiac cell types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。