Significant data suggest that cerebral accumulation of the amyloid β-protein (Aβ) plays an initiating role in Alzheimer's disease (AD), however, Aβ can exist in multiple different forms and it is not clear which of these contribute to the propagation of amyloid or toxicity. When injected into animal models, Aβ-containing homogenates from AD or APP transgenic mouse brain accelerate amyloid pathology, but the nature of the seeding species remain ill-defined. In this study, we took advantage of well-characterized brain extracts from human AD cases and App(NL-F/NL-F) mice, to assess the seeding activity of diffusible forms of Aβ. Extracts containing readily diffusible forms of Aβ, (which we refer to as S extracts) are obtained by soaking tissue slices in physiological buffer and removing large non-diffusing material by centrifugation. Such AD brain S extracts are potent neuritotoxins and contain a broad range of different sized forms Aβ. When tested at approximately ten months after a single intracerebral injection of AD brain S extract, App(NL-F/NL-F) mice exhibited a significant perturbation of learned behavior, together with accelerated cerebral amyloid deposition, microgliosis, astrocytosis, neuronal dystrophy and synaptic loss. Importantly, inoculation of App(NL-F/NL-F) mice with S extract from a human control brain altered neither the memory of learned behavior nor the appearance of amyloid and associated pathologies. These results indicate that diffusible forms of Aβ derived from AD brain can readily induce aggregation of endogenous Aβ and accelerate negative outcomes associated with Aβ accumulation.
Experimental evidence that readily diffusible forms of Aβ from Alzheimer's disease brain have seeding activity.
实验证据表明,阿尔茨海默病患者大脑中易扩散的 Aβ 形式具有播种活性
阅读:10
作者:Song Simin, Liu Qianmin, Chen Ruixiang, Chen Ping, Tao Min, Li Siyao, Guo Liping, Zhu Xixi, Liu Yan, Liu Lu, Sasaguri Hiroki, Saito Takashi, Saido Takaomi C, Walsh Dominic M, Zhang Zhangjin, Hong Wei
| 期刊: | Acta Neuropathologica Communications | 影响因子: | 5.700 |
| 时间: | 2025 | 起止号: | 2025 May 24; 13(1):112 |
| doi: | 10.1186/s40478-025-02032-w | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
