Mitigation of chemotherapy-induced gut dysbiosis and diarrhea by supplementation with heat-killed Bacteroides fragilis.

通过补充热灭活的脆弱拟杆菌来缓解化疗引起的肠道菌群失调和腹泻

阅读:5
作者:Yan Xinwen, Lin Xinlong, Wu Jianhua, Zheng Lijun, Liu Yangyang, Wu Fang, Lin Ying, Lu Yishi, Huang Chongyang, Shen Binhai, Liu Hongbin, Huang Ruo, Hou Fengyi, Zhou Qian, Song Mengyao, Liu Ke, Zhu Fangqing, Li Sheng, Lin Yuqing, Wang Wei, Li Ping, Liao Wangjun, Zhi Fachao
BACKGROUND: The role of gut microbial dysbiosis in chemotherapy-induced diarrhea (CID) pathogenesis remains unclear in humans. This study investigates gut microbiota alterations in CID patients and evaluates the therapeutic potential of probiotic supplementation. METHODS: To establish a paired cohort for longitudinal comparison and minimize confounding factors in assessing CID-related microbiota changes, strict inclusion/exclusion criteria were applied to gastrointestinal cancer patients. Fecal samples from eligible participants underwent shotgun metagenomic sequencing to comprehensively profile the gut microbiome composition and function. To evaluate probiotic efficacy and mechanisms, we utilized 6-8-week-old male BALB/c and C57BL/6 mice in established 5-FU- or CPT-11-induced CID models. Probiotic efficacy was assessed using primary (diarrhea severity) and secondary endpoints (body weight change, intestinal permeability). Mechanistic studies were conducted in murine models, complemented by IEC-6 cells and intestinal organoid experiments to elucidate microbiota-host interactions. RESULTS: Analysis of paired fecal samples (pre- and post-chemotherapy) from 30 gastrointestinal cancer patients (n = 60) revealed chemotherapy-induced reduction of Bacteroides fragilis (B. f) via metagenomics sequencing, with baseline B. f relative abundance negatively correlating with CID severity (r =  - 0.93, p = 3.1e - 12). Building on these clinical observations, in 5-FU/CPT-11-induced CID murine models, oral gavage of heat-killed B. f (hk-B. f) outperformed live bacteria in diarrhea alleviation. Mechanistically, B. f-derived succinate exacerbated diarrhea, while its capsular polysaccharide (PSA) ameliorated mice diarrhea. This discovery explains the discrepant therapeutic effect between hk-B. f and live B. f. Fluorescence tracing confirmed hk-B. f transiently localized to the upper gastrointestinal tract without extraintestinal colonization. hk-B. f preserved epithelial integrity, mitochondrial function, and intestinal organoid development (higher budding count and larger organoid surface area). Moreover, hk-B. f upregulated the expression of BCL2 and downregulated the expression of BAX. Shifting the balance between BCL2 and BAX alleviates intestinal epithelial apoptosis. Caspase-3 inhibition or BCL2 silencing abrogated hk-B. f's anti-apoptotic effects in IEC-6 cells. CONCLUSIONS: Pathological process of CID can be partially explained by compositional alterations in the gut microbiota. Supplementation with hk-B. f reduces 5-FU-stimulated epithelial injury through mitochondrial apoptotic pathway in CID murine models. These preclinical findings suggest hk-B. f merits further investigation as a potential strategy for improving CID, pending clinical validation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。