Decellularized porcine dermal hydrogel enhances implant-based wound healing in the setting of irradiation

脱细胞猪真皮水凝胶可促进放射治疗后植入物引起的伤口愈合

阅读:2
作者:Lillian DeCostanza ,Graham M Grogan ,Anthony C Bruce ,Corrina M Peachey ,Evan A Clark ,Kristen Atkins ,Tina Tylek ,Michael D Solga ,Kara L Spiller ,Shayn M Peirce ,Christopher A Campbell ,Patrick S Cottler

Abstract

Acellular Dermal Matrix (ADM) provides mechanical and soft tissue support in implant-based breast reconstruction, and has shown to modulate the healing response. However, skin flap necrosis, edema, and previous radiation therapy can hinder ADM integration. Effective biomaterial integration requires regulating the immune response, fibrosis, and adipocyte-driven functionalization. Extracellular matrix (ECM) hydrogels have demonstrated utility in tissue regeneration, and decreasing inflammation and fibrosis in various tissues. Therefore, we hypothesized that a Decellularized Porcine Dermal (DPD) hydrogel to support ADM integration would prevent excessive fibrosis, regulate the macrophage response, and promote adipogenesis. Exploration of DPD hydrogel during ADM implantation in mice (healthy and radiated) revealed long-term effects of irradiation on implant wound healing. DPD hydrogel rescued radiation-induced fibrosis, restoring capsule thickness of healthy mice, and did not increase the fibroblast migration into the ADM. As a modulating soft tissue filler, DPD hydrogel also promoted adipocyte infiltration in healthy and irradiated mice. Detailed macrophage analysis showed that radiation led to the increase in pro-inflammatory, transition, and reparative markers. Despite relatively subtle effects on individual macrophage phenotype markers, multidimensional flow cytometry analysis revealed that DPD hydrogel temporally regulated two subpopulations. he presence of DPD resulted in significantly reduced CD9HiArg1HiCD301bLo and CD163HiCD38HiCD301bHi macrophages in healthy mice at one week, and a significant increase in CD9High macrophages with low expression of other markers at 6 weeks in irradiated mice. DPD hydrogel promotes a decreased fibrotic, and adipocyte-promoting coordination of wound healing in healthy and irradiated wound beds while not disrupting the immunomodulatory effects of ADM. STATEMENT OF SIGNIFICANCE: Acellular Dermal Matrix (ADM) provides mechanical and soft tissue support in post-mastectomy implant-based breast reconstruction, and positively affects wound healing. Following breast reconstruction, skin flap necrosis, edema, and previous radiation therapy can hinder ADM integration. Effective wound healing and biomaterial integration requires regulating the cellular immune response. Extracellular matrix hydrogels have demonstrated utility in tissue regeneration and decreasing inflammation and fibrosis in various tissues, but has yet to be utilized in the setting of breast reconstruction. Here, we demonstrated that a decellularized dermal hydrogel as an adjunct to ADM, decreases fibrosis and promotes adipogenesis during the coordination of wound healing in healthy and clinically relevant microenvironments that have received radiation therapy while not disrupting the immunomodulatory effects of implanted ADM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。