ObjectiveHirschsprung's disease (HSCR) is a rare congenital disorder attributed to the defects of enteric neural crest cells. We aim to identify characteristic phosphorylation proteins and preliminarily explore underlying related action mechanisms in HSCR.MethodsColon samples from HSCR patients underwent proteomic and phosphoproteomic sequencing to identify differentially expressed phosphoproteins (DEPPs) and proteins (DEPs). Interaction network construction and analysis of correlations with upstream phosphorylating kinases were employed to pinpoint core proteins. HSCR rat models were established through enema administration of Benzalkonium chloride and evaluated by measuring colon cross-sectional area, colon weight, AchE, and PGP9.5 levels. Histopathological damage was assessed via hematoxylin and eosin staining. Protein expression was analyzed using western blotting. Furthermore, the impact of SRC kinase in HSCR was investigated utilizing an SRC-specific inhibitor in HSCR rat models.ResultsA total of 5725 DEPPs were identified, with SRC kinase emerging as a key regulatory protein. In the HSCR rat model, SRC expression was elevated along with increased pCAV1 and FLNA levels. Notably, inhibition of SRC protein kinase activity by 1-(tert-butyl)-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d] pyrimidin-4-amine (PP2) led to reduced colon cross-sectional area and weight, an increase in the number of colonic ganglion cells, heightened AchE levels, enhanced PGP9.5 expression, and slight enlargement of the crypt, thereby alleviating HSCR symptoms in rats. Additionally, SRC kinase inhibition following PP2 treatment decreased the expression of pCAV1 and FLNA.ConclusionsInhibition of SRC kinase activity may potentially reduce CAV1/FLNA expression, ultimately alleviating the severity of HSCR in rats.
Suppression of SRC protein kinase activity alleviates the severity of aganglionosis by impairing CAV1/FLNA expression.
抑制 SRC 蛋白激酶活性可通过损害 CAV1/FLNA 表达来减轻无神经节细胞症的严重程度
阅读:5
作者:Xu Xiaogang, Liu Yanqing, Lan Menglong, Liu Fei, Xia Huimin, Zeng Jixiao
| 期刊: | Science Progress | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Apr-Jun;108(2):368504251336287 |
| doi: | 10.1177/00368504251336287 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
