Juvenile zebra finches learn to sing by imitating conspecific songs of adults during a sensitive period early in life. Area X is a basal ganglia nucleus of the song control circuit specialized for song-related sensory-motor learning during song development. The structural plasticity and the molecular mechanisms regulating neuronal structure in Area X during song development and maturation are unclear. In this study, we examined the structure of spiny neurons, the main neuron type in Area X, at key stages of song development in male zebra finches. We report that dendritic arbor of spiny neurons expands during the sensitive period for song learning, and this initial growth is followed by pruning of dendrites and spines accompanied by changes in spine morphology as the song circuit matures. Previously, we showed that overexpression of miR-9 in Area X impairs song learning and performance and alters the expression of many genes that have important roles in neuronal structure and function (Shi et al., 2018). As an extension of that study, we report here that overexpression of miR-9 in spiny neurons in juvenile zebra finches reduces dendritic arbor complexity and spine density in a developmental stage-specific manner. We also show that miR-9 regulates the structural maintenance of spiny neurons in adulthood. Together, these findings reveal dynamic microstructural changes in the song circuit during the sensitive period of song development and provide evidence that miR-9 regulates neuronal structure during song development and maintenance.
Change of Spiny Neuron Structure in the Basal Ganglia Song Circuit and Its Regulation by miR-9 during Song Development.
基底神经节鸣唱回路中棘状神经元结构的变化及其在鸣唱发育过程中受 miR-9 调控
阅读:5
作者:Jarrell Hannah, Akhtar Ansab, Horowitz Max, Huang Zhi, Shi Zhimin, Fang ZhiDe, Li XiaoChing
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 16; 45(29):e2276232025 |
| doi: | 10.1523/JNEUROSCI.2276-23.2025 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
