BACKGROUND: Uremic impairment of wound healing is a well-established phenomenon, however the etiology of this condition continues to be a medical enigma. Carbamylation, posttranslational modification (PTM) occurring with high frequency in uremic milieu, is known to have impact on structural and functional properties of proteins and peptides. Herein we show that carbamylation of the members of kinin-kallikrein system, that play an essential role in wound healing process, results in its aberrant functionality and impedes the complex process of tissue regeneration in uremic patients. RESULTS: Through enzymatic assays we demonstrate that carbamylation of kininogen results in aberrant bradykinin generation. We confirmed that bradykinin is efficiently carbamylated in uremic conditions and, alternatively, by activated neutrophiles. Moreover, this modification affects proteolytic cleavage of the peptide, potentially leading to the accumulation of the carbamylated form. Modified peptide demonstrated lower affinity toward its receptors. Carbamylation diminished bradykinin's ability to stimulate expression of the B(1) receptor and cytokines essential in wound healing process. Carbamylated bradykinin was significantly less potent in promoting angiogenesis and keratinocyte motility as compared to the native form. In the in vivo murine model of wound healing, we observed impaired collagen fiber production and delayed re-epithelialisation in the presence of carbamylated form. CONCLUSIONS: Carbamylation-driven impairment of wound healing is a mechanistic link to wound persistence in uremia. Importantly, production of carbamylated bradykinin in localized inflammatory milieus could be a significant contributor to delayed wound healing and formation of chronic wounds in diabetes or psoriasis.
Bradykinin's carbamylation as a mechanistic link to impaired wound healing in patients with kidney dysfunction.
缓激肽的氨基甲酰化是肾功能不全患者伤口愈合受损的机制联系
阅读:6
作者:Kaminska Marta, KaÅucka Urszula, Babickova Janka, Benedyk-Machaczka MaÅgorzata, Skandalou Eleni, Grant Melissa M, Marti Hans-Peter, Mydel Piotr
| 期刊: | BMC Biology | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Mar 12; 23(1):76 |
| doi: | 10.1186/s12915-025-02187-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
