Poria cocos Ethanol Extract Restores MK-801-Induced Cytoskeleton Regulation in Neuro2A and IMR-32 Cells and Locomotor Hyperactivity in C57BL/6 Mice by Modulating the Rho Signaling Pathway.

茯苓乙醇提取物通过调节 Rho 信号通路恢复 MK-801 诱导的 Neuro2A 和 IMR-32 细胞的细胞骨架调节以及 C57BL/6 小鼠的运动过度活跃

阅读:13
作者:Chang Ya-Ying, Lu Cheng-Wei, Lin Tzu-Yu, Tzeng I-Shiang, Chen Yi-Chyan, Chen Mao-Liang
Poria cocos extract attenuates MK-801-induced hyperactivity via RhoA/ROCK1 pathway modulation in mice. BACKGROUND/OBJECTIVES: Poria cocos (P. cocos), a traditional East Asian medicinal mushroom, serves as a medicine and nutritional supplement, has been used to improve sleep and mood. Its bioactive compounds may regulate calcium signaling and Rho family proteins, which are linked to cytoskeletal remodeling and psychiatric symptoms. This study investigated the effects of P. cocos ethanol extract (PCEE) on Rho signaling, cytoskeleton dynamics, and behavior in MK-801-treated cells and mice. METHODS: PCEE components were analyzed using HPLC. IMR-32 and Neuro2A cells were treated with MK-801 and PCEE to assess changes in F-actin (via fluorescence staining), cell migration (wound healing and Transwell assays), and Rho signaling proteins (by immunoblotting). In vivo, C57BL/6 mice received MK-801 to induce hyperactivity, followed by PCEE treatment. RhoA/ROCK1 pathway protein levels in the prefrontal cortex were analyzed. RESULTS: PCEE reversed MK-801-induced inhibition of cell migration, F-actin disruption, and dysregulation of Rho-related proteins (RhoGDI1, RhoA, CDC42, Rac1, ROCK1, MLC2, PFN1). In mice, PCEE significantly reduced MK-801-induced hyperactivity and normalized RhoA/ROCK1 signaling in the brain. CONCLUSION: PCEE modulates cytoskeletal dynamics by regulating RhoA/ROCK1 signaling and attenuates MK-801-induced behavioral and molecular changes, suggesting its therapeutic potential for psychosis with fewer adverse effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。