Strategic delivery of omega-3 fatty acids for modulating inflammatory neurodegenerative diseases.

策略性地输送ω-3脂肪酸以调节炎症性神经退行性疾病

阅读:11
作者:Chen Yixin, Touboul Roni, Chen Yao, Chang Chuchun L
OBJECTIVES: Early-life inflammatory events like infections and injuries may predispose the brain to Alzheimer's disease (AD) by disrupting neurodevelopment and raising vulnerability. The association between early neuroinflammation and subsequent neurodegeneration leading to dementia remains unclear. We hypothesize that omega-3 (n-3) fatty acids (FA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), positively regulate neuro-immune cells, preserving their cell membrane structure and metabolic homeostasis. Our study examined whether strategic delivery of n-3 FA via injectable n-3 triglycerides (TG) can influence microglial lipid metabolism to prevent or delay AD progression. METHODS AND RESULTS: We characterized n-3 treatment effects on modulating lipid and metabolic homeostasis in microglia during the critical window of brain development. Our preliminary studies on determining the effects of early n-3 treatment on brain cell homeostasis indicate that perinatal bolus n-3 TG injections suppressed activation of gliosis-associated markers in young mice predisposed to AD (5xFAD) and yielded sustained regulatory effects on the expression of inflammatory molecules, such as interleukin-6 (Il6) and tumor necrosis factor-alpha (Tnfα), in adult brains. A significant increase in high-frequency ultrasonic vocalizations (USV) was observed in P6 5xFAD mice that received perinatal n-3 compared to vehicle control, implicating enhanced active communication patterns. Improvement in behavior deficits was observed in n-3-treated adult AD mice. Perinatal n-3 TG treatment modified brain lipid composition in young offspring, increasing key membrane lipid species, such as phospholipids (PL) and lysophospholipids (lysoPL). Pro-inflammatory sphingolipids associated with neurodegeneration, including lactosylceramide, were significantly lower in mice treated with n-3 than those in saline-treated AD mice. CONCLUSION: Our study establishes a proof of principle for targeting brain immune cell metabolism with injectable n-3 TG to mitigate neuroinflammation in AD pathogenesis, paving the way for future research into early treatments for related central nervous system (CNS) disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。