The development of the visual system is a complex and multistep process characterized by the precise wiring of retinal ganglion cell (RGC) axon terminals with their corresponding neurons in the visual nuclei of the brain. Upon reaching primary image-forming nuclei (IFN), such as the superior colliculus and the lateral geniculate nucleus, RGC axons undergo extensive arborization that refines over the first few postnatal weeks. The molecular mechanisms driving this activity-dependent remodeling process, which is influenced by waves of spontaneous activity in the developing retina, are still not well understood. In this study, by manipulating the activity of RGCs in mice from either sex and analyzing their transcriptomic profiles before eye-opening, we identified the Type I membrane protein synaptotagmin 13 (Syt13) as involved in spontaneous activity-dependent remodeling. Using these mice, we also explored the impact of spontaneous retinal activity on the development of other RGC recipient targets such as nonimage-forming (NIF) nuclei and demonstrated that proper frequency and duration of retinal waves occurring prior to visual experience are essential for shaping the connectivity of the NIF circuit. Together, these findings contribute to a deeper understanding of the molecular and physiological mechanisms governing activity-dependent axon refinement during the assembly of the visual circuit.
Proper Frequency of Perinatal Retinal Waves Is Essential for the Precise Wiring of Visual Axons in Nonimage-Forming Nuclei.
围产期视网膜波的适当频率对于非成像核中视觉轴突的精确连接至关重要
阅读:9
作者:Negueruela Santiago, Morenilla-Palao Cruz, Sala Salvador, Ordoño Patricia, Herrera Macarena, Coca Yaiza, López-Cascales Maria Teresa, Florez-Paz Danny, Gomis Ana, Herrera EloÃsa
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2024 | 起止号: | 2024 Oct 2; 44(40):e1408232024 |
| doi: | 10.1523/JNEUROSCI.1408-23.2024 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
