Lipopolysaccharide (LPS; a bacterial endotoxin) treatment causes acute inflammatory conditions. Acute inflammation causes the brain to activate neurons in some brain nuclei known as circumventricular organs. The c-Fos immunoreaction could be used to assess this neural activity. The current study aimed to check the activated neurons in time and site effect during toxicity and inflammation induced by LPS. The c-Fos antibody immunofluorescence labeling was checked at one, three, and six hours after LPS intoxication. Moreover, a retrograde viral tracing approach was employed to verify the neuronal connections among certain brain nuclei that were activated. The results indicated the activation of several brain nuclei in the hippocampus, epithalamus, thalamus, hypothalamus, basal ganglia, midbrain, and medulla oblongata. The type of brain nuclei and the number of neurons that were activated in relation to the duration of acute inflammation were clearly different. Furthermore, this research demonstrated that these active brain nuclei were connected neuronally. Ultimately, acute inflammatory responses induced by LPS treatment activated dorsal raphe serotonergic neurons. Twenty-two brain nuclei were shown to be involved in the neuroinflammatory response via whole-brain mapping. One hour after LPS administration, neurons in the dorsomedial hypothalamic nucleus (DM), lateral septal nucleus (LS), and solitary tract nucleus (SOL) were significantly activated. However, the sensory circumventricular organs (CVOs) were activated three hours after LPS treatment. It was also demonstrated that dorsal raphe serotonergic neurons play a vital role in the body's reaction to acute inflammation. This study confirmed the involvement of dorsal raphe serotonergic neurons in response to acute inflammation and toxicity induced by LPS.
LPS mediated neuronal c-Fos activation: whole-brain mapping, site and time effect in intoxicated mice.
LPS介导的神经元c-Fos激活:中毒小鼠的全脑定位、部位和时间效应
阅读:5
作者:Hussein Mona N, Alotaibi Khalid S, Althobaiti Saed A, Albattal Shatha B, Ke Xiao, Dai Jinxia, Cao Gang, Soliman Mohamed Mohamed
| 期刊: | Toxicology Research | 影响因子: | 2.100 |
| 时间: | 2025 | 起止号: | 2025 Aug 27; 14(4):tfaf131 |
| doi: | 10.1093/toxres/tfaf131 | 靶点: | FOS |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
