Accumulation of TDP-43 causes karyopherin-α4 pathology that characterises amyotrophic lateral sclerosis

TDP-43 的积累会导致核转运蛋白-α4 病理,这是肌萎缩侧索硬化症的特征。

阅读:2
作者:Manpreet Singh Atwal # ,Jerneja Nimac # ,Urša Čerček ,Sarah Ricarda Goesch ,Hannah Rebecca Goesch ,Paraskevi Tziortzouda ,Tiziana Ercolani ,Anna Zatorska ,Terouz Pasha ,Ivo Carre ,Jacqueline Mitchell ,Claire Troakes ,Bart Tummers ,Vera Župunski ,Boris Rogelj ,Tibor Hortobágyi ,Frank Hirth
Cytoplasmic mislocalisation and nuclear depletion of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis (ALS), including mutations in the C9ORF72 gene that characterise the most common genetic form of ALS (C9ALS). Studies in human cells and animal models have associated cytoplasmic mislocalisation of TDP-43 with abnormalities in nuclear transport receptors, referred to as karyopherins, that mediate the nucleocytoplasmic shuttling of TDP-43. Yet the relationship between karyopherin abnormalities and TDP-43 pathology are unclear. Here we report karyopherin-α4 (KPNA4) pathology in the spinal cord of TDP-43-positive sporadic ALS and C9ALS patients. Structural analyses revealed the selective interaction between KPNA subtypes, especially KPNA4, with the nuclear localisation signal (NLS) of TDP-43. Targeted cytoplasmic mislocalisation and nuclear depletion of TDP-43 caused KPNA4 pathology in human cells. Similar phenotypes were observed in Drosophila whereby cytoplasmic accumulation of the TDP-43 homolog, TBPH, caused the nuclear decrease and cytosolic mislocalisation of the KPNA4 homolog, Importin-α3 (Impα3). In contrast, induced accumulation of Impα3 was not sufficient to cause TBPH mislocalisation. Instead, targeted gain of Impα3 in the presence of accumulating cytosolic TBPH, restored Impα3 localisation and partially rescued nuclear TBPH. These results demonstrate that cytoplasmic accumulation of TDP-43 causes karyopherin pathology that characterises ALS spinal cord. Together with earlier reports, our findings establish KPNA4 abnormalities as a molecular signature of TDP-43 proteinopathies and identify it as a potential therapeutic target to sustain nuclear TDP-43 essential for cellular homeostasis affected in ALS and frontotemporal dementia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。