Optogenetics, known for its precision in neural stimulation, is integral to behavioral research, enabling the study of neural circuits involved in decision-making, memory, social interaction, and movement. Traditional methodologies require two separate surgeries: the first to deliver a viral vector containing the opsin gene to the targeted brain region, and the second to implant an opto-probe for light stimulation. This dual-step process increases the risk of tissue damage and misalignment between the injection and implantation sites. In this study, we present a 3D-printed multimodal optogenetic neural probe that combines light delivery and fluid injection into a single device. By integrating a commercially available microfluidic tube with a 3D-printed opto-probe, the device offers rapid and customizable assembly for diverse applications. The probe was implanted in the subthalamic nucleus of mice, enabling viral vector delivery and device implantation in a single procedure. Following viral expression, behavioral experiments demonstrated that optical stimulation increased travel distance and velocity, confirming effective neuronal activation. Immunohistochemistry analysis revealed successful expression of Channelrhodopsin-2 (ChR2(H134R)) through mCherry labeling of neurons, reduced astrocytic (GFAP) and microglial (ED1) activation around the implantation site, and preserved neuronal populations as confirmed by NeuN staining. These results highlight the device's biocompatibility, minimal inflammatory response, and suitability for long-term neural modulation, with potential applications in research and clinical settings.
3D-printed optogenetic neural probe integrated with microfluidic tube for opsin/drug delivery.
3D打印的光遗传神经探针与微流控管集成,用于视蛋白/药物输送
阅读:8
作者:Sukesan Revathi, Mohammed Mohsin, Oh Keonghwan, Sharma Malvika, Chaudhury Dipesh, Ha Sohmyung
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 7; 15(1):28863 |
| doi: | 10.1038/s41598-025-13654-4 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
