The cerebral cortex is the outermost brain structure and is responsible for the processing of sensory input and motor output; it is seen as the seat of higher-order cognitive abilities in mammals, in particular, primates. Studying gene functions in primate brains is challenging due to technical and ethical reasons, but the establishment of the brain organoid technology has enabled the study of brain development in traditional primate models (e.g., rhesus macaque and common marmoset), as well as in previously experimentally inaccessible primate species (e.g., great apes), in an ethically justifiable and less technically demanding system. Moreover, human brain organoids allow the advanced investigation of neurodevelopmental and neurological disorders. As brain organoids recapitulate many processes of brain development, they also represent a powerful tool to identify differences in, and to functionally compare, the genetic determinants underlying the brain development of various species in an evolutionary context. A great advantage of using organoids is the possibility to introduce genetic modifications, which permits the testing of gene functions. However, the introduction of such modifications is laborious and expensive. This paper describes a fast and cost-efficient approach to genetically modify cell populations within the ventricle-like structures of primate cerebral organoids, a subtype of brain organoids. This method combines a modified protocol for the reliable generation of cerebral organoids from human-, chimpanzee-, rhesus macaque-, and common marmoset-derived induced pluripotent stem cells (iPSCs) with a microinjection and electroporation approach. This provides an effective tool for the study of neurodevelopmental and evolutionary processes that can also be applied for disease modeling.
Targeted Microinjection and Electroporation of Primate Cerebral Organoids for Genetic Modification.
利用靶向显微注射和电穿孔技术对灵长类脑类器官进行基因改造
阅读:9
作者:Tynianskaia Lidiia, EÅiyok Nesil, Huttner Wieland B, Heide Michael
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2023 | 起止号: | 2023 Mar 24; (193):10 |
| doi: | 10.3791/65176 | 种属: | Primate |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
