Modulating Cancer Stem Cell Characteristics in CD133+ Melanoma Cells through Hif1α, KLF4, and SHH Silencing.

通过 Hif1α、KLF4 和 SHH 沉默来调节 CD133+ 黑色素瘤细胞中的癌症干细胞特性

阅读:9
作者:Ozdil Berrin, Avci Cigir Biray, Calik-Kocaturk Duygu, Gorgulu Volkan, Uysal Aysegul, Güler Günnur, Karabay Yavaşoğlu Nefise Ülkü, Aktug Huseyin
Malignant melanoma is a highly aggressive form of skin cancer, partly driven by a subset of cancer stem cells (CSCs) with remarkable capacities for self-renewal, differentiation, and resistance to therapy. In this study, we examined how silencing three key genes-Hif1α, KLF4, and SHH-affects CSC characteristics. Using small interfering RNA (siRNA)-based approaches, we observed significant changes at both the gene and protein levels, shedding light on how these pathways influence melanoma progression. Our results demonstrated that silencing these genes reduces the stem-like features of CSCs. Notably, Hif1α silencing triggered a marked decrease in hypoxia-related gene expression, while targeting SHH led to a reduction in Gli1, a downstream effector of SHH signaling, highlighting its potential as a therapeutic target. We also observed changes in epigenetic markers such as HDAC9 and EP300, which play crucial roles in maintaining stemness and regulating gene expression. Interestingly, these interventions appeared to reprogram CSCs, pushing them toward a phenotype distinct from both traditional CSCs and non-stem cancer cells (NCSCs). Our findings emphasize the importance of targeting key signaling pathways in melanoma CSCs and underscore the value of mimicking the tumor microenvironment in experimental models. By revealing the dynamic plasticity of melanoma CSCs, this study offers fresh insights into potential therapeutic strategies, particularly using siRNA to modulate pathways associated with tumor progression and stem cell behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。