The subiculum represents a crucial brain pivot in regulating seizure generalization in temporal lobe epilepsy (TLE), primarily through a synergy of local GABAergic and long-projecting glutamatergic signaling. However, little is known about how subicular GABAergic interneurons are involved in a cell-type-specific way. Here, employing Ca(2+) fiber photometry, retrograde monosynaptic viral tracing, and chemogenetics in epilepsy models of both male and female mice, we elucidate circuit reorganization patterns mediated by subicular cell-type-specific interneurons and delineate their functional disparities in seizure modulation in TLE. We reveal distinct functional dynamics of subicular parvalbumin+ and somatostatin+ interneurons during secondary generalized seizure. These interneuron subtypes have their biased circuit organizations in terms of both input and output patterns, which undergo distinct reorganization in chronic epileptic condition. Notably, somatostatin+ interneurons exert more effective feedforward inhibition onto pyramidal neurons compared with parvalbumin+ interneurons, which engenders consistent antiseizure effects in TLE. These findings provide an improved understanding of different subtypes of subicular interneurons in circuit reorganization in TLE and supplement compelling proofs for precise treatment of epilepsy by targeting subicular somatostatin+ interneurons.
Circuit Reorganization of Subicular Cell-Type-Specific Interneurons in Temporal Lobe Epilepsy.
颞叶癫痫中下托细胞类型特异性中间神经元的回路重组
阅读:14
作者:Fei Fan, Wang Xia, Fan Xukun, Gong Yiwei, Yang Lin, Wang Yu, Xu Cenglin, Wang Shuang, Chen Zhong, Wang Yi
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 29; 45(5):e0760242024 |
| doi: | 10.1523/JNEUROSCI.0760-24.2024 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
