Caprylic Acid Restores Branched-Chain Amino Acid Metabolism in a Mouse Cachexia Model.

辛酸可恢复小鼠恶病质模型中的支链氨基酸代谢

阅读:7
作者:Kawahara Isao, Fujiwara-Tani Rina, Mori Takuya, Nukaga Shota, Nishida Ryoichi, Miyagawa Yoshihiro, Goto Kei, Ohmori Hitoshi, Fujii Kiyomu, Luo Yi, Sasaki Takamitsu, Nakashima Chie, Ogata Ruiko, Kuniyasu Hiroki
Cancer-associated sarcopenia is closely linked to the prognosis of cancer patients, making its management a critical aspect of cancer treatment. Branched-chain amino acids (BCAAs) are known to promote skeletal muscle growth in healthy individuals; however, their efficacy in cancer patients remains controversial. In this study, we investigated the effects of BCAAs on cancer-associated sarcopenia to identify the underlying mechanisms that may suppress their effectiveness. In both a mouse cachexia model and an in vitro cachexia model, BCAAs did not significantly reduce oxidative stress, improve oxidative phosphorylation, suppress cytokine production, or enhance muscle mass and maturation, as observed in non-cancer-bearing models. Furthermore, treatment with 5-fluorouracil exacerbated sarcopenia in the mouse cachexia model, independent of tumor weight reduction, and this deterioration was not ameliorated by a BCAA-supplemented diet. The ineffectiveness of BCAAs was attributed to impaired BCAA catabolism, characterized by the decreased expression of branched-chain α-ketoacid dehydrogenase (BCKD) and increased levels of its inactive phosphorylated form, which were driven by elevated expression of BCKD kinase. These metabolic alterations were induced by high-mobility group box-1 (HMGB1). Notably, caprylic acid reversed these impairments in BCAA metabolism, thereby restoring BCAA efficacy. Our findings suggest that enhancing BCAA metabolism may improve their therapeutic potential in the treatment of cancer-associated sarcopenia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。