BACKGROUND: Multidrug resistance (MDR) in triple-negative breast cancer (TNBC) leads to treatment failure and tumor recurrence. Dysregulation of the MYC oncogene is associated with the pathogenesis of TNBC and the development of chemoresistance via overexpression of ATP-binding cassette (ABC) transporters. Therefore, in the present study, we aimed to identify molecules from a natural product origin that prevent the development of MDR in TNBC by targeting the MYC signaling. METHODS: The cell viability of TNBC was evaluated using sulforhodamine assay. Protein levels were detected by western blots or enzyme-linked immunosorbent assays. Intracellular calcein and hoechst33342 accumulation assay aimed to evaluate the inhibitory ability of phytocompounds on drug-efflux functions of ABCB1 and ABCG2 transporters. The Cancer Genome Atlas (TCGA) database was used to explore clinical genomic data. Furthermore, the zebrafish xenotransplantation model bearing Dil-labeled TNBC cells was applied to testify the in vivo effects of phyto-sesquiterpene lactones. RESULTS: The results of the present study demonstrated that the phyto-sesquiterpene lactones exhibited an MDR prevention effect by repressing efflux activities of ABCB1 and ABCG2 transporters. Mechanistic studies showed that phyto-sesquiterpene lactones inducted TNBC cell apoptosis and cell cycle G2/M arrested by blocking the STAT3/MYC pathway. Clinical genomic data demonstrated that the percentages of MYC amplification and mRNA were upregulated approximately two-fold higher in the TNBC patients than the non-TNBC breast cancer patients. The survival of patients with an alteration in MYC was significantly lower in TNBC as compared to other subtypes. Moreover, the results of the zebrafish xenograft model confirmed that phyto-sesquiterpene lactones exerted stronger inhibitory effects on TNBC tumor growth in vivo. CONCLUSIONS: In conclusion, these three phyto-sesquiterpene lactones were promising candidates for TNBC treatment and shed light on the prevention of developing MDR TNBC.
Phyto-Sesquiterpene Lactones Prevent the Development of Multidrug Resistance in TNBC via ABC Transporters Inhibition and STAT3/MYC Signaling.
植物倍半萜内酯通过抑制 ABC 转运体和 STAT3/MYC 信号传导来预防 TNBC 中多药耐药性的发展
阅读:13
作者:Chang Ying-Tzu, Wu I-Ting, Lee Chien-Hsing, Hung Chin-Chuan
| 期刊: | Cancers | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 17(8):1321 |
| doi: | 10.3390/cancers17081321 | 靶点: | STAT3 |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
