Identifying the crucial binding domain of histatin-1 to recombinant TMEM97 in activating chemotactic migration in human corneal epithelial cells.

鉴定组蛋白-1与重组TMEM97的关键结合域,以激活人角膜上皮细胞的趋化性迁移

阅读:5
作者:Son Kyung-No, Lee Hyun, Lee Sang Min, Pierre-Jacques Dominick, Shah Dhara, Cologna Stephanie M, Aakalu Vinay Kumar
TMEM97, also known as the sigma-2 receptor, plays a crucial role as an endoplasmic reticular protein involved in various physiological processes such as wound healing, and cholesterol metabolism. Moreover, TMEM97 has been implicated in multiple human diseases including neurodegenerative disorders and cancers. Histatin peptides are endogenous peptides with diverse biological effects, including antimicrobial, immunomodulatory, and wound healing functions. Recent studies have revealed that histatin-1 (Hst1) acts as an endogenous ligand for TMEM97 and is essential for Hst1-induced corneal epithelial migration. In this study, we sought to establish the crucial Hst1 residues that facilitate binding to TMEM97. The purified full-length (FL)-TMEM97 expressed from Escherichia coli exhibited comparable binding affinity, as indicated by the dissociation equilibrium constant (K(D)) determined by Surface plasmon resonance (SPR), to commercially sourced TMEM97 expressed in mammalian cells. SPR analysis revealed that TMEM97 bound to FL-Hst1 and selected deletion mutants of Hst1. Truncation experiments pinpointed the central region of Hst1 as crucial for its binding to TMEM97, with the loss of residues 15-19 either significantly weakening or completely abolishing the binding interaction. Furthermore, alanine substitution mutant experiments highlighted residues 9-19 as critical for the interaction between TMEM97 and Hst1. Functional assays including migration and signaling were also compared for Hst1 and mutant Hst1. Collectively, these findings underscore the specific binding of Hst1 to TMEM97 and elucidate the critical regions within Hst1 necessary for this interaction which is critically important for the epithelial migration and signaling changes in the ERK and Akt pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。