An ultrasound-responsive transgene circuit can provide non-invasive, spatiotemporally precise remote control of gene expression and cellular behavior in synthetic biology applications. However, current ultrasound-based systems often rely on nanoparticles or harness ultrasound's thermal effects, posing risks of tissue damage and cellular stress that limit their therapeutic potential. Here, we present Spatiotemporal Ultrasound-induced Protein Expression Regulator (SUPER), a novel gene switch enabling mediator-free, non-invasive and direct regulation of protein expression via ultrasound in mammalian cells. SUPER leverages the mammalian reactive oxygen species (ROS) sensing system, featuring KEAP1 (Kelch-like ECH-associated protein 1), NRF2 (nuclear factor erythroid 2-related factor 2), and antioxidant response element (ARE) as its core components. We demonstrate that low-intensity (1.5 W/cm2, â¼45 kHz), brief (40 s) ultrasound exposure generates non-toxic levels of ROS, activating the KEAP1/NRF2 pathway in engineered cells and leading to the controlled expression of target gene(s) via a synthetic ARE promoter. The system exhibits robust expression dynamics, excellent reversibility, and functionality in various cell types, including human mesenchymal stem cell-derived lines (hMSC-TERT). In a proof-of-concept study, ultrasound stimulation of subcutaneously implanted microencapsulated engineered cells stably expressing the sonogenetic circuit in a type 1 diabetic mouse model triggered sufficient insulin production to restore normoglycemia. Our work highlights ultrasound's potential as a precise and non-invasive tool for advancing cell and gene therapies in personalized medicine.
A mediator-free sonogenetic switch for therapeutic protein expression in mammalian cells.
一种无需介质的声致变色开关,用于在哺乳动物细胞中表达治疗性蛋白
阅读:6
作者:Huang Jinbo, Xue Shuai, Teixeira Ana Palma, Fussenegger Martin
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 20; 53(6):gkaf191 |
| doi: | 10.1093/nar/gkaf191 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
